Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Malaysian Journal of Microbiology ; : 93-104, 2022.
Article in English | WPRIM | ID: wpr-977461

ABSTRACT

Aims@#Lactic acid bacteria (LAB) biofilms constitute one of the most remarkable breakthroughs in the field of food biopreservatives and can be employed to prevent foodborne disease. The purposes of this study were to investigate the efficacy of inhibitory LAB biofilms against foodborne pathogens and evaluate their tolerance to acidic pH and bile salts, as well as their physicochemical properties.@*Methodology and results@#Four strains of Lactobacillus brevis biofilms isolated from kimchi showed antipathogenic activity to the bacteria Staphylococcus aureus FNCC 0049 and Escherichia coli FNCC 0091. These biofilms were also tolerant to pH 2.5, 0.3% bile salt and strong adhesion. Two of the four L. brevis biofilms (L. brevis biofilm KA2 and KB1) produced the highest inhibitory activity against both pathogenic bacterial indicators, tolerance to acidic pH and bile salts, and the strongest adhesion. In addition, based on Scanning Electron Microscope-Energy Dispersion X-ray Spectroscopy (SEM-EDS) analysis, both biofilm strains had a smooth surface texture; the cell morphology was rod-shaped and consisted of several elements such as carbon, oxygen and nitrogen, which was built up of extracellular polymeric substances (EPS).@*Conclusion, significance and impact of study@#The presence of EPS as a constituent of LAB biofilms influenced their survival abilities in an acidic pH and bile salt environment. As a result, the characteristics of L. brevis biofilm KA2 and KB1 made them excellent candidates for use as antimicrobial packaging systems in food biopreservative applications.


Subject(s)
Levilactobacillus brevis , Lactobacillales , Foodborne Diseases
2.
Electron. j. biotechnol ; 28: 95-100, July. 2017. tab
Article in English | LILACS | ID: biblio-1016080

ABSTRACT

Mannheimia haemolytica leukotoxin (LKT) is a known cause of bovine respiratory disease (BRD) which results in severe economic losses in the cattle industry (up to USD 1 billion per year in the USA). Vaccines based on LKT offer the most promising measure to contain BRD outbreaks and are already commercially available. However, insufficient LKT yields, predominantly reflecting a lack of knowledge about the LKT expression process, remain a significant engineering problem and further bioprocess optimization is required to increase process efficiency. Most previous investigations have focused on LKT activity and cell growth, but neither of these parameters defines reliable criteria for the improvement of LKT yields. In this article, we review the most important process conditions and operational parameters (temperature, pH, substrate concentration, dissolved oxygen level, medium composition and the presence of metabolites) from a bioprocess engineering perspective, in order to maximize LKT yields.


Subject(s)
Animals , Cattle , Bacterial Toxins/biosynthesis , Mannheimia haemolytica/metabolism , Bovine Respiratory Disease Complex/microbiology , Exotoxins/biosynthesis , Temperature , Trace Elements , Carbon/metabolism , Mannheimia haemolytica/pathogenicity , Amino Acids/metabolism , Hydrogen-Ion Concentration , Kinetin
SELECTION OF CITATIONS
SEARCH DETAIL